

### **GSSC Report**

**David Band for the GLAST SSC** 



#### **Outline**

- User Support
- Documents
- Testing
- Ingest and Databases
- Observing Timelines



## **USER SUPPORT**



#### Source Detectability—Web-based Tool

- Concept: What is the detectability by the LAT of a source at a given location?
  - The location provides the underlying diffuse background;
     adjacent point sources are not considered
  - The user inputs the observing mode and the spectral index
  - The user inputs 2 of detection probability, source strength and observing time; tool calculates 3<sup>rd</sup> quantity.
- Prototype: IDL turned into Python script with web interface http://glast.gsfc.nasa.gov/ssc/dev/jd/sensitivity.html
  - Currently the script implements a simplistic placeholder detectability calculation
  - The LAT team is working on a more accurate calculation
  - Ultimately the detectability calculation may result in either a table or a scaling relation



#### Spectrum Simulations—WebSpec

- Concept: Use a web-based version of XSPEC (see http://heasarc.gsfc.nasa.gov/webspec/webspec.html) to simulate LAT and GBM spectra.
- Implementation: WebSpec runs 'fakeit' using a library of response and background files. We will have our own customized WebSpec.
  - GLAST needs a large library of RSP and BAK files (many incident angles, observing modes, backgrounds)
  - GLAST needs different spectral models
- Work to be done: I've created GBM response and background files; LAT versions are necessary.
- Side effect: This tool delivers RSP and BAK files to users.



#### Other User Support Tools

- More sophisticated simulations can be performed with the science analysis tools.
- The helpdesk is set up: http://glast.gsfc.nasa.gov/ssc/help/
- The FAQ web page is set up: http://glast.gsfc.nasa.gov/cgi-bin/ssc/faq/glastfaq.cgi
- The weekly timeline posting web page is set up: http://glast.gsfc.nasa.gov/ssc/resources/timeline/short/
  - The most current timeline is posted
  - Currently, the timeline is posted as-is
  - This page will be cloned to post the yearly timeline



#### **User Support Tools To Be Developed**

- Burst posting—we are adapting GCN scripts for our use
- GI proposal submission—we will use RPS
- TOO request submission—we will use RPS
- Instrument team observation requests—we will use RPS.
- Exposure/count mapping—we will adapt one of the tools included in the science tools to create and post maps



#### **Current GI Program Schedule**

- The legal announcement will be in Research Opportunities in Space and Earth Sciences (ROSES), most likely for 2007.
- Details will depend on current NASA policy (NSPIRES, etc.)

| • | Effective NRA Release            | 12/15/06 |
|---|----------------------------------|----------|
| • | Proposal Deadline                | 3/15/07  |
| • | Peer Review                      | 6/15/07  |
| • | Rejections Sent Out              | 7/1/07   |
| • | <b>Request Funding Proposals</b> | 8/1/07   |
| • | Launch                           | 8/31/07  |
| • | <b>Funding Proposals Due</b>     | 9/15/07  |
| • | <b>Funding Decision</b>          | 10/1/07  |
| • | Cycle 1 Begins                   | 11/1/07  |



#### **Documentation**

- Proposer's Guide—details on submitting a GI proposal beyond information in ROSES. Describes proposal preparation tools. Not begun.
- Science Plan—description of the GLAST mission, particularly information relevant to Gl's scientific use of the mission. Neil Gehrels began drafting this document >2 years ago, I volunteered to continue, but little has been done since. Text can be extracted from other documents.
- User Support Manual—I am developing an internal document on operating the user support system.
- GOF Managers Website—I am putting together a website on standard GOF procedures and documents.



#### **Science Analysis Documentation**

- The science analysis tools documentation will consist of a detailed manual, a reference manual (similar to fhelp pages) and analysis threads.
- The instrument teams and the GSSC are developing documentation in support of the Data Challenges and internal 'tool checkouts.'
- Much text already exists, but must be pulled together.
- For rudimentary analysis threads, see
   http://glast.gsfc.nasa.gov/ssc/dev/Analysis\_Tools\_Documentation/
   Threads/
- An issue is how to maintain web and printable versions.
   However, good text is more important than good formatting.



## **DOCUMENTS**



#### Science Data Products ICD

- I am editing the ICD. The 1<sup>st</sup> draft was based on the report of the Data Products Working Group from ~3 years ago.
- The GBM DPs are more mature than the LAT's, in part because many GBM products are standard FTOOLS files.
  - The GBM is introducing an RSPII format
  - The contents of the LAT event files have not yet been decided
- I produced sample files of key GBM files for DC2.
- The status is summarized at glast.gsfc.nasa.gov/ssc/dev/data\_products/science\_data\_products.html and the document can be found at glast.gsfc.nasa.gov/ssc/dev/current\_documents/Science\_DP\_ICD.doc
- Note: the Operations Data Products ICD (timelines, Level 0 data) has been baselined and is maintained by the MOC.



#### **GSSC Functional Requirements Document (FRD)**

- Because it was begun before the ground system, the FRD is maintained at the Project level.
- The FRD was revised and expanded extensively in response to the peer reviews.
- When Rev. A came before the Project CCB, the Project decided to review it one more time.
- The Project decided that many of the requirements are not 'functional' requirements.
- Consequently I separated the requirements into GSSC specifications and 'functional' requirements. This is the current status of the document; Rev. B is under review by the Project.
- Rev. A and B can be found at: http://glast.gsfc.nasa.gov/ssc/dev/current\_documents/



#### **PDMP**

- At the last meeting, GUC members commented that the PDMP draft was repetitious and incomplete.
- Consequently I revised the PDMP; see glast.gsfc.nasa.gov/ssc/dev/current\_documents/PDMP.doc
- This draft is still under development. In particular, the sections on instrument calibration and the disposition of the resulting data are incomplete.



#### **GSSC Internal Documents**

- GSSC Development Plan (GSSC-0001)
- GSSC Verification Matrix (GSSC-0002)
- GSSC Design Document (GSSC-0003)
- GSSC Software Management Plan (GSSC-0004)
- GSSC Test Plan (GSSC-0005)
- LAT Event Summary Database Requirements (GSSC-0006)
- SAE Database Requirements (GSSC-0007)

**↑** Baselined

• GLAST-HEASARC MOU – (GSSC-0008)

- **↓** Drafted
- Ingest System Detailed Design (GSSC-0009)
- Operations System Detailed Design (GSSC-0010)
- GSSC Testing Standards (GSSC-0011)
- GSSC LAT SAE Databases Detailed Design (GSSC-0012)
- GSSC Documentation Standards (GSSC-0013)
- GSSC Operations Level 4 Requirements Document



## **TESTING**



#### **Testing**

- The testing schedule for the Ground System drives the GSSC's internal software development.
- Our release dates are ~3 weeks before the Ground Readiness Tests (GRTs) to allow sufficient time for testing with the other ground system elements and problem resolution.
  - The GSSC software release (11/24/04) for GRT#1 was on time
  - GRT#1 was successfully completed (4/13/05)
  - The GSSC software release #2 is complete (4/18/05)
    - Will support GRT#2 (June 27-29 '05)
  - Software development for GSSC software release #3 (Sept 6 '05) is currently underway
    - Will support GRT#3 (Sept 27 '05)
- Internal unit and system tests of the GSSC software are implemented in our automated build and problem reporting system. This assures that software changes will pass all regression testing.



# INGEST AND DATABASES



#### **Database and Ingest System**

- GSSC will ingest all science data and make them publicly available. The data system consists of:
  - A data ingest system
  - Seachable databases to hold the data
  - Web/e-mail interfaces for easy access to the data.



#### Database and Ingest Systems—Status

- The detailed designs for the GSSC's Ingest and Database Systems are mature and documented
- Automated ingest system w/tracking databases is already operational for planning/commanding products (required for GRT#1 and #2)
- Ingest of the science data products will be implemented during the summer and fall of '05
- Custom databases have been designed for LAT photon, event, and S/C position
  - Prototypes worked well for DC1
  - Improvements have been made to make design more flexible (used in 2 science tools "checkups" after DC1)
- These key databases are accessible through the GSSC's web page
- All other data will be available through HEASARC's W3Browse



#### **Software Robustness, Databases**

- Software developed with thorough, continuous testing and comprehensive documentation for maximum reliability.
  - Each subsystem has a detailed design document and a user's guide to describe the software.
  - All code is built and tested (unit tests) every night.
  - Code has in-line documentation which is turned into html nightly.
  - System tests are scripted and run many times during the development cycle.
- GBM data will be served by Browse (similar to BATSE data)
- LAT Event and Photon Data
  - On Web: photons and events searchable by 2-D spherical direction of origin, time range, and energy range.
  - Trade studies optimized the search and storage (in FITS files) of the event/photon data.
  - Currently a user can query the whole sky database in less than a minute to select a year's worth of photons coming from a randomly placed 15° radius circle.



#### **How Browse Will Look For GLAST**

| Browse Home                                                     | HEASARC     | Browse                                                                                                          |                                       | Archive Hera HE                                                                 |  |
|-----------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|--|
| Other Browse interfaces: Batch   Correlation   Index of all tab |             |                                                                                                                 | tables                                | Query File And Session Uploads                                                  |  |
| Main Search Form > S                                            | Search Resu | lts > Choose D                                                                                                  | ata Products                          |                                                                                 |  |
| Start Search (Reset                                             | More C      | ptions                                                                                                          |                                       |                                                                                 |  |
| . Do you want to search                                         |             |                                                                                                                 | bject name or coordinate              | s, select "More Options".)                                                      |  |
| Object Name Or Co                                               | ordinates:  |                                                                                                                 | and/or Local<br>File:                 | Choose File no file selected                                                    |  |
| Coordinate System:<br>Search Radius:                            |             | p. Cyg X-1 or<br>00 00, 4 12 6 or<br>g X-2; 12.235, 16<br>to separate multi<br>lect names or<br>ordinate pairs) | olons File snot                       | ild contain objects and/or coordinate pairs<br>ine or separated by semi-colons. |  |
|                                                                 |             | 2000 💠                                                                                                          |                                       |                                                                                 |  |
|                                                                 |             | efault                                                                                                          | arcmin 💠                              |                                                                                 |  |
| and/or search by date                                           |             | fault uses the op                                                                                               | timum radius for each catalog         | searched.                                                                       |  |
| Observation Dates:                                              |             |                                                                                                                 | YYYY-MM-DD hh:mm:ss or MJD: DDDDD.ddd |                                                                                 |  |
|                                                                 | Ra          |                                                                                                                 |                                       | multiple dates/ranges with semicolons (;).<br>1995-01-15 12:00:00; 1997-03-20   |  |
| 2. What missions and                                            |             | lo you want to                                                                                                  | search?                               |                                                                                 |  |
| ☐ ASCA                                                          | -           | oSAX                                                                                                            | Chandra (CXC)                         | ROSAT                                                                           |  |
| RXTE                                                            | xmm         | -Newton (XSA)                                                                                                   |                                       |                                                                                 |  |
| Past X-Ray Mission                                              | 5           |                                                                                                                 |                                       |                                                                                 |  |
| Ariel V BI                                                      |             | RT                                                                                                              | Copernicus                            | Einstein                                                                        |  |
| EXOSAT G                                                        |             | a                                                                                                               | HEAO 1                                | osos                                                                            |  |
| □sas 3 □ui                                                      |             | u                                                                                                               | ☐ Vela 5B                             |                                                                                 |  |
| Gamma-Ray Mission                                               | ns          |                                                                                                                 |                                       |                                                                                 |  |
| CGRO                                                            | cos         | В                                                                                                               | HETE-2                                | INTEGRAL                                                                        |  |
| Esas 2                                                          | Swift       |                                                                                                                 | <b>V</b> GLAST                        | Gamma-Ray Bursts                                                                |  |



#### **Photon Database Internal Storage**

- All data are in HEASARC-compatible FITS files
- Data are served through system with multiple nodes, each of which has a complete copy of the photon data
  - Fast data access from internal disk
  - Multiple backups in case of failure of a single data disk
- Data broken into sky regions and time periods in internal data files
- Hierarchical Triangular Mesh (HTM) used to define regions
  - Developed for Sloan Digital Sky Survey at Johns Hopkins
  - Recursively divides sky into spherical triangles
- Trade study determined optimal combination of HTM pixelization level and time binning
  - Best time of ~39 sec was Level 3 pixelization (512 sky regions)
     with 2 month time bins



#### **Internal Storage Trade Study**

- Explored a grid of HTM pixelization level and time bins
  - HTM Levels 2, 3, 4, 5 & 6
  - Time bins ranging from 1 day to 1 year
- Performed battery of searches to determine average search time.





## OBSERVING TIMELINES



#### **GLAST Scheduling with Tako**

- The GSSC will use Tako to create observation schedules ("science timelines"). These will contain both sky survey and pointed observations.
- Tako is used for Swift, is being tested for RXTE, and will be used for Astro-E.
- GLAST's version of Tako has had its first release and contains basic functionality.
- Tako will be used for both long-term (a complete GI cycle) and short-term (weekly) scheduling.
- Tako can apply a variety of constraints such as time of day or a periodic constraint such as binary phase.
- Tako will combine together accepted proposals and sky survey observations to create a Long-Term Schedule with a precision of 1 week.



#### **Short-Term Scheduling Process (i)**

- Because of the long lead time for scheduling TDRSS, the Preliminary Science Timeline covering one week must be produced ~3 weeks ahead of being loaded to spacecraft.
- The Preliminary Science Timeline is distributed to the MOC, LISOC, and GIOC for their planning.
- MOC uses the Preliminary Science Timeline to request TDRSS contacts.
- The LISOC and GIOC send corresponding instrument commands to the GSSC.
- The GSSC examines instrument commands for effect on science observations:
  - If conflict, iterate with LISOC or GIOC
  - If no conflict, GSSC creates combined timeline ("Observatory Timeline Package") including Final Science Timeline



#### **Short-Term Scheduling Process (ii)**

- Although the Science Timeline is initially generated well in advance of upload, it may be changed a few days before the upload if:
  - (i) TDRSS contacts are not affected or
  - (ii) MOC agrees to loss of contacts; TDRSS overscheduled since contacts will be lost as a result of TOOs or ARs.
- A final review of the weekly timeline (open to GSSC, LISOC, GIOC, & Project Scientists) precedes the upload of commands to the spacecraft
- When the week ends the MOC produces an as-flown timeline that the GSSC reconciles with the Final Science Timeline.
- After this reconciliation the GSSC reschedules during a future week any observations disrupted by TOOs and ARs.



#### **Testing the Scheduling System**

- Ground Readiness Test #2 (~June 28) includes a basic test of the scheduling scheme:
  - Initial distribution of Tako-generated schedule.
  - Reception of commands from LISOC/GIOC.
  - Transmission of Observatory Timeline Package to MOC.
- Continue to test scheduling in further GRTs.
- RXTE planners are also evaluating Tako and starting to use it for complicated scheduling.



#### **Availability of Schedules**

- All schedules will be publicly available on the web.
- Includes:
  - Long Term (1 year) Schedule.
  - Most up-to-date version of Science Timeline. For every week the posted timeline progresses:
    - Preliminary -> Final -> As-Flown
  - As-flown Timeline may differ from the Final Science Timeline as a result of TOOs, ARs, and any anomalies.